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ABSTRACT
In this paper, we provide a brief overview of the vulnera-
bilities present in the OpenFlow protocol as it is currently
deployed by hardware and software vendors. We show that
there has been a widespread failure to adopt TLS protec-
tion for the OpenFlow control channel by both controller
and switch vendors, leaving OpenFlow vulnerable to man-
in-the-middle attacks. We also highlight the classes of vul-
nerabilities that emerge from the separation of the control
plane and data planes in OpenFlow network designs. We il-
lustrate that, due to the centralized design of the network,
special care must be taken to avoid denial of service vulner-
abilities in OpenFlow applications. Finally, we offer sugges-
tions to address the vulnerabilities and paths for future work
to secure OpenFlow networks.

Categories and Subject Descriptors
C.2.6 [COMPUTER-COMMUNICATION NET-
WORKS]: Internetworking

General Terms
Security, Software-Defined Networking

Keywords
OpenFlow, Vulnerabilities, Denial-of-Service

1. INTRODUCTION
OpenFlow [20] and other software defined network

protocols have generated interest due to the amount of
control they offer developers of network control soft-
ware. By creating a standardized, network-accessible
interface to control the data-plane of network equip-
ment, control-plane logic can be moved from individual
network devices to a centralized controller or group of
controllers. By implementing the control logic in the
controller, network protocol changes and complex traf-
fic engineering requirements can be accommodated by
re-configuring, updating or swapping out the controller
instead of upgrading or replacing the network hardware.

1.1 OpenFlow Protocol

The OpenFlow specification defines a protocol to com-
municate with a network device and control the oper-
ation of its data plane. The data plane is controlled
by providing rules (referred to as flows) to the network
devices (referred to as switches). Each flow specifies a
condition to match incoming packets and an instruction
to be applied to matched packets. As the specification
has evolved, the available operations and matching cri-
teria have become more complicated (e.g. queuing con-
trol for quality of service and matching against multiple
flow tables), but the basic idea of matching a rule and
performing an action has remained the same.

There are two general styles of rule creation in Open-
Flow networks: proactive, in which rules are inserted
into switches before they are needed; and reactive, in
which rules are inserted into switches in response to
packets observed by the controller via Packet-In mes-
sages. In reactive networks, the switch generates a
Packet-In message in response to a packet that does
not match a rule, which encapsulates the packet and
sends it to the controller for a decision to be made. The
controller can then either acknowledge the message and
ignore the packet, or respond with an action to apply
to the packet along with an optional rule to install into
the switch’s flow-table to match future packets.

When strictly adhering to the specification, the flow
rules for a switch can only be installed by an Open-
Flow controller over a TCP connection initiated by the
switch. However, some switches support an additional
“listener mode”, in which they accept connections to
a configured TCP port from any network source [7].
These externally initiated connections can also be used
to write rules to switches and read information from
them. This mode of operation allows for easy debug-
ging and verification of rule states without adding load
or complexity to controllers. However, it introduces a
major vulnerability because it has no built-in authenti-
cation or access control methods.

The communications between the controller and switches
are carried over a TCP connection that can optionally
be protected by TLS with mutually authenticated cer-
tificates signed by a private key generated by the site

1



Figure 1: In-band vs. Out-of-band. (The dashed
lines represent OpenFlow controlled links)

(i.e. a root certificate). The TCP connection is initiated
by the switch (barring the non-standard listener mode
mentioned above) with an operator-configured setting
that specifies the IP address and TCP port of the con-
troller. There have been discussions on the official mail-
ing lists since 2009 [2] to include a controller discovery
protocol in the standard, but the latest version (v1.3)
still specifies manual configuration only [8].

There are two general methods of handling the Open-
Flow traffic between the switches and controller, which
are referred to as in-band and out-of-band control. In
the out-of-band control deployments, the switches have
network paths to communicate with the controller that
are not affected by the operation of OpenFlow. This
requires the configuration of VLANs or separate phys-
ical interfaces that don’t have OpenFlow rules applied
to them. Conversely, in in-band control configurations,
the switches use the OpenFlow network both to carry
data and to communicate with the controller. Figure 1
illustrates the difference between the two.

2. RELATED WORK
There have been several papers focused on creating

secure networks using OpenFlow. FRESCO [23] oper-
ates on top of the NOX controller and provides a pro-
gramming framework to execute and link together secu-
rity related applications. Jafarian et. al [18] developed
a system using OpenFlow that makes the IP addresses
of internal hosts appear to change frequently to external
networks to make network reconnaissance and attacks
difficult. NICE [17] uses OpenFlow to build a DDoS de-
tection and mitigation system for large infrastructure-
as-a-service cloud providers. However, these works are
focused on providing security to networks controlled
with OpenFlow and rely on the assumption that the
underlying OpenFlow network is secure.

FortNOX [21] was developed as an extension to the
NOX OpenFlow controller to deal with conflicting and
possibly malicious OpenFlow applications by adding role-
based authorization and constraints to the permitted

rules that an OpenFlow application can send to switches.
In this case, an “application” could be anything that
wants to modify, record, duplicate, or block network
traffic using OpenFlow (e.g. firewalls, intrusion preven-
tion systems, traffic logging, etc.).

In a similar context, FlowVisor [22] acts as a medi-
ator between controllers and switches to apply limita-
tions to the rules created by controllers. It does this
by rewriting the rules generated by the controllers to
restrict their effect to a specific “slice” of the network.
These “slices” can be defined by physical ports, or by
packet headers (e.g. only traffic on TCP port 80). In
this case, the difference between FortNOX and FlowVi-
sor is that FlowVisor runs separately from the con-
troller (normally on a different host), where FortNOX is
a single controller that executes many concurrent appli-
cations. Both of these applications focus on restricting
untrusted controllers or applications running on con-
trollers; however, there has not been any work pub-
lished examining the vulnerabilities that emerge from
OpenFlow network designs or vulnerabilities with the
protocol. Our work examines these vulnerabilities.

3. VULNERABILITY ANALYSIS

3.1 Lack of TLS Adoption
The original OpenFlow specification (v1.0) required

the control channel between the controllers and switches
to be protected using TLS [3]. However, the subse-
quent specifications, including the current one (v1.3.0),
removed the requirement and made it an optional fea-
ture [8]. Using TLS has a higher technical barrier for
operators due to the steps required to configure it cor-
rectly, which include the following: generating a site-
wide certificate, generating controller certificates, gen-
erating switch certificates, signing the certificates with
the site-wide private key, and finally installing the cor-
rect keys and certificates into all of the devices. Com-
paratively, the plaintext operation only requires a sin-
gle configuration parameter (the controller address) to
function, which may incentivize network administrators
to skip TLS completely.

Due to the rapidly evolving nature of OpenFlow, many
vendors of both switches and controllers have not fully
implemented the specification and have skipped the TLS
portion entirely. Table 1 and 2 show the current TLS
support for many popular OpenFlow switches and con-
trollers. There is a noticeable lack of support from both
sides, which consequently deters both sides from spend-
ing significant effort implementing it. For example,
when referring to TLS support, one of the developers
for the Floodlight controller wrote, “it would be pretty
trivial to add it if there was sufficient interest” and that
the lack of demand for the feature was due to limited
support from the switches [6].
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Switch Vendor TLS Support

HP No [7]

Brocade No

Dell No

NEC Partial1

Indigo No

Pica8 No

OpenWRT Yes [10]

Open vSwitch Yes [5]

Table 1: TLS Support by OpenFlow Switch Ven-
dor

OpenFlow Controller TLS Support

NOX Controller only2

POX No [14]

Beacon No [11]

Floodlight No [6]

MuL No [13]

FlowVisor No3

Big Network Controller No4

Open vSwitch Controller Yes [5]

Table 2: TLS Support in Popular OpenFlow
Controllers

The lack of TLS support and lack of motivation to
implement it leaves an avenue for attackers to infiltrate
OpenFlow networks and remain largely undetected. While
this might be infeasible for some physically secure net-
works, such as data-centers where access to switches
is difficult for adversaries, it becomes a greater concern
in campus-style and remote-office deployments in which
switches are deployed to less-monitored locations easier
to access without detection (e.g. closets, offices, outdoor
junction boxes, etc). It could even be the case that the
OpenFlow traffic is carried by an inherently adversarial
ISP (e.g. a remote office in a foreign country interested
in eavesdropping).

Once an attacker can place a device between the con-
troller and the switch to intercept OpenFlow traffic,
he/she could insert additional rules into the switch to
record/modify sensitive traffic, gain access to protected
segments of the network, interfere with other devices
access, and even control all down-stream switches from

1Only on the IP8800 model
2The controller can be configured with TLS and a cer-
tificate for switches to verify but it does not authenticate
switches [1].
3The RPC Interface for configuring FlowVisor supports
TLS; however, the connections to the switches and con-
trollers currently do not [15].
4Big Network Controller (from Big Switch Networks) is
built on top of the Floodlight controller [12] and has not
made public any datasheets, advertisements, or configura-
tion guides that indicate that they added TLS support.

the controller. Additionally, this can all be done with
no observable difference to the controller because the
adversary can modify the OpenFlow messages coming
from the switches to hide the malicious flows in the
same way FlowVisor does to isolate network slices [22].
While this type of attack is possible with traditional
network equipment, it is difficult to make configuration
changes to the devices and correctly spoof the responses
to network management software to conceal the change
due to the varying nature of SNMP OIDs5 and con-
figuration formats between vendors. OpenFlow greatly
reduces this technical barrier by standardizing statistics
gathering and flow management between all vendors.

The risks posed by a successful man-in-the-middle at-
tack in an in-band managed OpenFlow network are ar-
guably worse than a regular network due to the abil-
ity for the attacker to immediately reconfigure all of
the down-stream switches. In a normal network, an at-
tacker would have to wait until an operator logs into the
management interface of each down-stream switch using
an insecure protocol (e.g. Telnet, SNMPv2) to capture
the credentials. However, due to the constant connec-
tivity and lack of authentication in the plaintext Open-
Flow TCP control channel, an attacker can immediately
seize full control of any down-stream switches and exe-
cute very fine-grained eavesdropping attacks that would
be difficult to detect.

For example, in figure 2, the attacker could pass Open-
Flow traffic between the controller and the lower switches
as normal, but install an additional rule in switch 3 that
duplicates any database traffic between the two hosts
and sends it to a remote host. With a normal net-
work, duplicating the specific traffic between two hosts
connected to a switch and passing the traffic along to
a remote host would require a complex reconfiguration
of each switch after waiting to capture administrative
credentials, possibly even requiring features that many
switches don’t have (e.g. GRE encapsulation, TCP
header matching).

While this type of attack was technically achievable
before, OpenFlow drastically lowered the difficulty level
to the point where it could easily be automated and
packaged into malware. It eliminated both the hetero-
geneity in the interfaces for network reconfiguration and
the time-consuming requirement of capturing manage-
ment credentials.

The risk of these types of attacks is greatly exacer-
bated if a switch is left configured with a passive lis-
tening port. It eliminates the requirement for the at-
tacker to conduct the initial man-in-the-middle attack.
By simply discovering a switch with a passive listening
port via network scanning, the attacker can dump the

5An SNMP OID is a object identifier for use in the simple
network management protocol. Vendors often have custom
OIDs for managing proprietary aspects of their devices.
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Figure 2: Man-in-the-middle Attack in an In-
band OpenFlow Network

flows to conduct additional reconnaissance and then in-
sert rules to hijack downstream switches, capture traffic
passing through the switch, and/or configure it to act
as a proxy for further attacks.

Even when TLS is implemented, failure to implement
switch authentication in the controller (e.g. NOX) can
allow an attacker to perform network reconnaissance by
observing how the controller responds to different pack-
ets. Additionally, depending on the logic in the con-
troller application, an attacker could potentially take
down portions of the network or receive sensitive traffic
by pretending that it has hosts attached to it that are
present elsewhere in the network, causing the controller
to redirect traffic towards the malicious switch.

3.2 Flow Enforcement
Due to the lack of TLS, there is no way for a controller

to verify that switch flow tables are configured with the
expected rules. This is demonstrated by FlowVisor [22],
which acts as a proxy between OpenFlow switches and
multiple controllers to provision “slices” of the network
for individual controllers to control. FlowVisor accepts
rules from controllers and re-writes them so the result-
ing rules only affect the “slices” of the network that a
given controller is allowed to control. For example, a
controller may be given the network slice comprised of
all traffic to and from an organization’s web servers.
This controller might then create a rule to drop all UDP
traffic in response to a denial-of-service attack. When
FlowVisor receives this rule, it will rewrite it to drop
all UDP traffic to and from the web servers, leaving the
rest of the network unaffected.

In traditional networking hardware, hijacking control
plane messages is very unlikely because the messages
traverse a backplane physically internal to the network-
ing hardware. There were no external interfaces ex-
posing the control network. A full TLS implementa-
tion could help guarantee the safety of the messages be-
tween the two; however, it wouldn’t help detect switches
that erroneously insert/remove additional or incorrect

rules. Additionally, tracking the state changes of the
flow-table for each switch by recording all of the flow-
removed messages generated by switches requires extra
logic on the controller, especially when faced with han-
dling power outages or other temporary network out-
ages.

This doesn’t necessarily expose any exploitable vul-
nerabilities. However, it can lead to a condition where
the controller has a different view of how traffic will
flow through the network, which in turn could lead to
a temporary vulnerability, network outage, or other un-
expected behavior.

Currently, the only way to verify the rules is by fre-
quently dumping and inspecting the flow tables from
each switch, which can be computationally costly for
the switches along with the controller if it is monitoring
a significant number of switches. A potential solution
could be a simple checksum of all of the rules in the flow
table that the switch includes in the keep-alive messages
to the controller. This would provide a fast way for a
controller to see if the network flow-state changed un-
expectedly, at which point it could dump the flows on
the switch to see what changed.

3.3 Denial of Service Risks
By centralizing the control plane, a new critical point

of failure is introduced into the network. This can
be mitigated by the use of multiple controllers (e.g.
Onix [19]), but without careful rule design, controllers
can be exposed to denial of service attacks.

When a switch receives a packet that doesn’t match
a flow, it applies the table-miss flow to it, which de-
fines an action to perform on these un-matched pack-
ets. In proactive networks, the design might not care
about these packets and configure the table-miss rule to
drop them. However, reactive networks and some proac-
tive networks that require the controller to know about
such packets will require the table-miss rule to gener-
ate a Packet-In message, which encapsulates the re-
ceived packet and forwards it to the controller. The con-
troller must either acknowledge the message and drop
the packet, or respond with an action to apply to the
packet along with an optional rule to install to match
similar packets in the future.

If an adversary can consistently cause Packet-In mes-
sages, he/she could quickly inundate the controller with
a large volume of traffic - making it unavailable to make
decisions about the rest of the network. Similarly, if
the adversary can consistently cause new rule genera-
tion (i.e. Flow-Mod messages), the rules can fill the flow
table on the switch and cause legitimate traffic on that
switch to be dropped. Even if the controller takes this
into account and implements logic to remove flows from
the switch as it fills up, the slow processing of Flow-
Mod messages by some switches (<10 per second [9])
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can result in it falling far behind the changes requested
by the controller.

3.3.1 DoS Vulnerabilities in POX layer 2 learning
switch

A simple illustration of the DoS vulnerabilities that
arise from an OpenFlow reactive rule design can be
found in the layer 2 learning switch that is included
with the POX controller [4]. The rule design is intu-
itive for a learning switch, but it contains the following
denial of service vulnerabilities that affect the controller
and the switch:

• The controller instructs the switches to flood mul-
ticast without installing a rule to match future
multicast packets. Therefore, every multicast packet
is sent to the controller, leaving an attacker a di-
rect avenue to DoS the controller with a traffic
flood to a multicast address.

• Traffic to unknown MAC addresses is flooded with-
out a rule insertion or a limit counter, creating
another controller DoS vulnerability.

• The mapping the application maintains of MAC
addresses to ports is based solely on the received
packet, so it has no protection against MAC spoof-
ing. Since this application inserts rules into switches
based on source MAC addresses, an attacker can
generate an unlimited number of rules, quickly fill-
ing up a switch’s flow-table by crafting packets
with random source MAC addresses destined to a
known network host. Additionally, since the map-
ping has no age-out or removal mechanism, an at-
tacker could fill the memory of the controller by
generating lots of traffic from random MAC ad-
dresses to other unknown MAC addresses on the
network, which results in added mappings, but no
new flows.

Even for an application as simple as this one, protect-
ing it requires implementing MAC spoofing protection
through port counters (with timers if network flexibility
is required), rate limiters for traffic to unknown hosts,
and switch rules for multicast.

In normal networks, network devices have specialized
firmware designed to deal with the known vulnerabili-
ties of the protocols it supported. For example, most
modern enterprise Ethernet switches have code that of-
fers ARP poisoning protection, DHCP snooping, broad-
cast/multicast rate limiting, and MAC address limits
for ports. In OpenFlow networks, all of these basic pro-
tections are left up to the controller. While it is possible
to do, it places the burden of implementing complex se-
curity protections on the developers of the OpenFlow
applications, who may not even be aware of these at-
tacks, let alone the protections required to stop them.

The majority of these DoS issues impact networks
that use reactive rules. Networks based on proactive
rule insertion do not have the same exposure to DoS
attacks as long as there is no traffic that can generate
arbitrary Packet-In events. However, the switches are
still vulnerable to a DoS caused by excessive flow inser-
tions/modifications from the controller so special care
has to be taken by application developers to avoid con-
ditions that cause excessive Flow-Mod messages. The
OpenFlow 1.3 specification [8] briefly suggests policing
packets destined to the controller; however, it indicates
that it is outside the scope of the specification. It pro-
vides no guidance for rate limiting messages to the con-
troller, nor rule-insertions to the switches, leaving DoS
protection entirely up to the controller developers.

3.4 Controller Vulnerabilities
By placing OpenFlow applications that perform deep

packet inspection and conversation reconstruction on
the host responsible for the control of the entire net-
work, application isolation/sandboxing becomes an in-
tegral part of network security. Without it, compromis-
ing one OpenFlow application could lead to adversar-
ial control of the entire network. Just correctly pars-
ing complex protocols can lead to vulnerabilities, as
demonstrated by the long list of Wireshark dissector
security advisories [16]. FortNOX [21] has addressed
this problem by compartmentalizing OpenFlow appli-
cations. However, the rest of the controllers do not
support this compartmentalization and assume the code
they are running can always be trusted.

4. SUGGESTIONS AND FUTURE WORK
The solution to the problems related to the lack of

TLS is obvious on the surface, just implement TLS in all
of the switches and controllers. However, this doesn’t
address the configuration cost it imposes on the net-
work operators. An alternative to the plaintext mode
could be to default to auto-generated keys and a trust-
of-first-use method of protection in the same manner
as SSH. This could be configured to require that a net-
work operator be present to verify the thumbprint of
each device’s public key the first time a switch connects
to a controller. Alternatively, without network oper-
ator verification, it would still limit the window for a
successful attack to the small time-frame between when
the switch is connected to a network and before it has
connected to the controller for the first time, affording
significantly better security with no additional configu-
ration required.

Without pushing transport security as a default early
on, OpenFlow risks repeating the errors of other inse-
cure network management protocols (e.g. Telnet, SN-
MPv2, TFTP) where “The link should be physically se-
cure”was initially asserted as acceptable security. Many
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current use-cases focus on the data-center and other
tightly-controlled networks where assuming a low-cost,
independent, physically-secure control channel is accept-
able. However, one of the many potentials for Open-
Flow is to control switches over the Internet to man-
age branch-office networks or to offer network manage-
ment and “security-as-a-service” to other organizations.
Without wide-spread adoption of strong protocol secu-
rity, OpenFlow will be unable to expand into those roles.

With regard to denial-of-service vulnerabilities, con-
troller vendors need to emphasize the importance of
rate-limiting and any rule-generation activity with the
publication of guidelines for developers. However, this
will have the inherent limitation of requiring extra effort
by the developers to be successful. Native support by
the controllers to recognize DoS attacks and insert rules
to stop them could be a feasible short-term solution. A
possible alternative solution and future work could be
a tool that combines OpenFlow application code anal-
ysis and flow-table analysis to systematically identify
the events and traffic that can generate Packet-In and
Flow-Mod messages in order to warn the developer of
potential DoS vulnerabilities so they can be addressed
during development rather than after implementation.

5. CONCLUSION
We illustrated the classes of vulnerabilities that af-

fect OpenFlow networks based on the current specifi-
cation and its widespread implementation by vendors.
We showed that networks that rely heavily on Packet-
In messages (i.e. reactive designs) can be exposed to
denial-of-service attacks against the switches and con-
troller(s) without complex rate-limiting logic in the con-
troller. We also showed that TLS has been widely ig-
nored by controller and switch vendors, making Open-
Flow vulnerable to man-in-the-middle attacks. Finally,
we suggested an additional trust-of-first-use alternative
to reduce the configuration necessary to establish a se-
cure OpenFlow network.
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